Algebras Versus Coalgebras
نویسنده
چکیده
Algebras and coalgebras are fundamental notions for large parts of mathematics. The basic constructions from universal algebra are now expressed in the language of categories and thus are accessible to classical algebraists and topologists as well as to logicians and computer scientists. Some of them have developed specialised parts of the theory and often reinvented constructions already known in a neighbouring area. One purpose of this survey is to show the connection between results from different fields and to trace a number of them back to some fundamental papers in category theory from the early 70’s. Another intention is to look at the interplay between algebraic and coalgebraic notions. Hopf algebras are one of the most interesting objects in this setting. While knowledge of algebras and coalgebras are folklore in general category theory, the notion of Hopf algebras is usually only considered for monoidal categories. In the course of the text we do suggest how to overcome this defect by defining a Hopf monad on an arbitrary category as a monad and comonad satisfying some compatibility conditions and inducing an equivalence between the base category and the category of the associated bimodules. For a set G, the endofunctor G × − on the category of sets shares these properties if and only if G admits a group structure. Finally, we report about the possibility of subsuming algebras and coalgebras in the notion of (F,G)-dimodules associated to two functors F,G : A → B between different categories. This observation, due to Tatsuya Hagino, was an outcome from the theory of categorical data types and may also be of use in classical algebra.
منابع مشابه
On Quantum Algebras and Coalgebras, Oriented Quantum Algebras and Coalgebras, Invariants of 1–1 Tangles, Knots and Links
We outline a theory of quantum algebras and coalgebras and their resulting invariants of unoriented 1–1 tangles, knots and links, we outline a theory of oriented quantum algebras and coalgebras and their resulting invariants of oriented 1–1 tangles, knots and links, and we show how these algebras and coalgebras are related. Quasitriangular Hopf algebras are examples of quantum algebras and orie...
متن کاملA Categorical Approach to Turaev’s Hopf Group-coalgebras
We show that Turaev’s group-coalgebras and Hopf group-coalgebras are coalgebras and Hopf algebras in a symmetric monoidal category, which we call the Turaev category. A similar result holds for group-algebras and Hopf group-algebras. As an application, we give an alternative approach to Virelizier’s version of the Fundamental Theorem for Hopf algebras. We introduce Yetter-Drinfeld modules over ...
متن کاملForms of Coalgebras and Hopf Algebras
We study forms of coalgebras and Hopf algebras (i.e. coalgebras and Hopf algebras which are isomorphic after a suitable extension of the base field). We classify all forms of grouplike coalgebras according to the structure of their simple subcoalgebras. For Hopf algebras, given a W ∗-Galois field extension K ⊆ L for W a finite-dimensional semisimple Hopf algebra and a K-Hopf algebra H, we show ...
متن کاملN ov 2 00 3 Symmetric Coalgebras
We construct a structure of a ring with local units on a co-Frobenius coalgebra. We study a special class of co-Frobenius coalgebras whose objects we call symmetric coalgebras. We prove that any semiperfect coalgebra can be embedded in a symmetric coalgebra. A dual version of Brauer's equivalence theorem is presented, allowing a characterization of symmetric coalgebras by comparing certain func...
متن کاملCohomology and Deformation of Module-algebras
An algebraic deformation theory of module-algebras over a bialgebra is constructed. The cases of module-coalgebras, comodule-algebras, and comodule-coalgebras are also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Categorical Structures
دوره 16 شماره
صفحات -
تاریخ انتشار 2008